¿Existe Santa Claus? Bien, pues aquí tenéis una explicación que creo que convencerá a los pequeños. Teniendo en cuenta que los niños de ahora no se conforman con cualquier cosa, por fin se puede dar una respuesta científica, o bien mentir como siempre, pero sabiendo qué es lo que ocultamos. He aquí el resultado del reciente estudio científico: Física tradicional 1. Ninguna especie conocida de reno puede volar. No obstante, existen 300.000 especies de organismos vivos pendientes de clasificación y, si bien la mayoría de ellas son insectos y gérmenes, no es posible descartar completamente la posible existencia entre ellas del reno volador que sólo Santa Claus conoce. 2. Hay unos 2.000 millones de niños (considerando únicamente a las personas con menos de 18 años) en el mundo. Pero dado que Santa Claus no parece que se ocupe de los niños musulmanes, hindúes, judíos y budistas, la cifra se reduce a un 15% del total (unos 378 millones, según las estadísticas mundiales de población). Según estas estadísticas, se puede calcular una media de 3,5 niños por hogar, por lo que estamos hablando de unos 91,8 millones de hogares (suponiendo que en cada uno de ellos, haya al menos un niño que se haya portado bien). 3. Santa Claus dispone de 31 horas en Nochebuena para realizar su trabajo, gracias a los diferentes husos horarios y a la rotación de la Tierra (se supone que viaja de este a oeste, lo cual parece lógico). Esto supone 822,6 visitas por segundo. En otras palabras, en cada hogar cristiano con niño bueno, Santa Claus tiene 1 milésima de segundo para aparcar, salir del trineo, bajar por la chimenea, llenar los calcetines, repartir los demás regalos bajo el árbol, comerse lo que le hayan dejado, trepar otra vez por la chimenea, subir al trineo y marchar hacia la siguiente casa. Suponiendo que cada una de estas 91,8 millones de paradas esté distribuida uniformemente sobre la superficie de la Tierra (lo cual es falso, pero puede valer como aproximación para los cálculos), hay 1,2 km entre casa y casa. Esto da un recorrido total de 110 millones de km, sin contar lo necesario para las paradas y hacer lo que cada uno de nosotros haría al menos una vez en 31 horas. Se deduce de ello que el trineo de Santa Claus se mueve a unos 1.000 km/s, 3.000 veces la velocidad del sonido. Como comparación, el vehículo fabricado por el hombre que mayor velocidad alcanza, la sonda espacial Ulises, se mueve a unos míseros 43 km/s. Un reno convencional puede correr a una velocidad punta de unos 24 km/h. 4. La carga del trineo añade otro elemento interesante al estudio. Suponiendo que a cada niño sólo se lleve un REGALO de tamaño mediano (0,9 kg), el trineo transporta unas 321.300 toneladas, sin contar a Santa Claus, a quien siempre se le describe como bastante rellenito. En la tierra, un reno convencional no es capaz de transportar más allá de 150 kg. 5. 5.353.000 toneladas viajando a 1.000 km/s crean una resistencia aerodinámica enorme, que provocará un calentamiento de los renos similar al que sufre una nave espacial en su reentrada a la atmósfera terrestre. La pareja de renos que vaya a la cabeza absorberá 1 trillón de julios de energía por segundo, cada uno. En pocas palabras, se incendiarán y consumirán casi al instante, quedando expuesta la pareja de renos posterior. También se originarán unas ondas sonoras ensordecedoras en este proceso. EI tiro de renos al completo se vaporizará en 4,26 milésimas de segundo. Santa Claus, mientras tanto, sufrirá unas fuerzas centrífugas 17.500,06 veces superiores a las de la gravedad. Santa Claus pesará 120 kg (lo cual es incluso demasiado delgado), sería aplastado contra la parte posterior del trineo con una fuerza de más de 2 millones de kg. Por consiguiente, si Santa Claus existió alguna vez y llevó los regalos a los niños en Navidad, ahora está muerto. FÍSICA CUÁNTICA Si respondemos lo anterior a un niño cuando nos pregunte por la existencia de Santa Claus (o bien lo deduce por sí mismo), el niño puede llevarse una desilusión tremenda. Por suerte, hay una contraexplicación que puede sernos útil en este caso: el análisis anterior, basado en leyes de la Física clásica, presenta un fallo importante, puesto que no considera los fenómenos cuánticos, que son bastante significativos en este caso particular. Como se ha indicado, se conoce con extrema precisión la velocidad terminal del reno a través del aire seco de diciembre sobre el hemisferio norte (por ejemplo). Así mismo, se conoce con tremenda precisión la masa de Santa Claus y su trineo (puesto que se conoce el número de niños, regalos y renos justo antes del vuelo). En cuanto a la dirección y sentido del vuelo, ésta es esencialmente de este a oeste. Todo lo anterior significa que se puede determinar con excelente precisión del vector del momento cinético de Santa Claus y su cargamento. Basta con aplicar el principio de incertidumbre de Heisenberg para saber que la posición de Santa Claus, en cualquier momento de Nochebuena, es extremadamente imprecisa. En otras palabras, está «difuminado» sobre la superficie de la Tierra, de forma análoga a una cierta distancia del núcleo del átomo. Por tanto, literalmente puede encontrarse en todas partes en un momento dado. Por último, las velocidades relativistas a las que los renos pueden llegar durante breves lapsos de tiempo hacen posible que, en ciertos casos, llegar a algunos lugares un poco antes de salir del Polo Norte. Santa Claus, en otras palabras, asume durante breves períodos de tiempo las características de tachión. Estamos de acuerdo en que la existencia de los tachiones aún no está probada y es hipotética, pero lo mismo ocurre con los agujeros negros, y ya nadie duda de su existencia. Por consiguiente, es perfectamente posible que Santa Claus exista y reparta todos los regalos en Nochebuena.Así que por si acaso, hay que portarse bien. |
miércoles, 8 de diciembre de 2010
Santaclaus según la física
lunes, 6 de diciembre de 2010
lunes, 29 de noviembre de 2010
Mirad que noticiario había, que manipulaba y desinformaba, con una libreta , un lapiz y un telescopio lo que se puede descubrir, Durante un mes, los investigadores del observatorio de Madrid […] realizaron sus investigaciones en la imagen del planeta Marte a través del Ecuatorial Group (?). En Marte hay vida vegetal y aun posiblemente vida animal rudimentaria […] Ha envejecido Marte más rápidamente que la Tierra, y no está lejana la época en la que el agua desaparezca totalmente de su superficie, para pasar a ser un astro muerto parecido a la Luna"
domingo, 28 de noviembre de 2010
Historia de la Geología
Las sacudidas periódicas que soportaban los habitantes de la Tierra, sobre todo el movimiento sísmico de Lisboa de 1755, que conmovió creencias y generó curiosas teorías, estimuló el interés por conocer el interior del planeta. Además, los avances en este terreno influyeron de manera decisiva en otros ámbitos del pensamiento pues vinieron a arrojar dudas sobre la edad que la Biblia le otorgaba.
La polémica sobre los orígenes de las rocas va a centrar los trabajos del siglo XVIII, existiendo dos teorías: neptunista, creada por Werner (1749-1817), y vulcanista, fundada por Hutton (1726-1797). Para el neptunismo, cuyo sistema se basaba más en hipótesis que en comprobaciones, la Tierra fue en su origen un núcleo sólido cubierto por un océano que actuó como verdadero agente del cambio geológico. Distingue cinco tipos de formaciones diferentes: primitiva, de transición, sedimentaria, derivativa y volcánica, la de constitución más reciente y accidental. El vulcanismo, o plutonismo, mantiene tesis distinta, aunque no llega a negar del todo el papel del agua en esta materia, admitiendo que la mayoría de las rocas parecen haberse formado como sedimentos marinos. Ahora bien, su consolidación había sido posible por la acción del calor subterráneo al introducirse materia fundida dentro de ellas. Más tarde, los agentes climatológicos desintegran las rocas; la lluvia y los ríos depositan sus trozos en el mar, donde constituyen nuevos estratos que emergerán otra vez para ser erosionados. En opinión de Hutton, la historia de la Tierra debe interpretarse como procesos naturales aún operativos o de reciente actividad. "Ningún poder -afirmaba- será empleado que no sea natural al globo, ni será admitida ninguna acción, excepto aquellas de las que conocemos el principio".
Aparte de esta polémica, durante la primera mitad de siglo se intentó determinar las secuencias temporales de los principales tipos de estratos de la corteza terrestre sin gran éxito en ese momento. Será durante la segunda, cuando Lehmann (1767) y Füchsel (1722-1773) establecieron la sucesión geológica de las rocas para el Harz y Turingia, respectivamente, sentando las bases de la estratigrafía científica.
Los plutonistas triunfaron sobre los neptunistas y el fuego, confuso y de estirpe romántica, que estallaba en los volcanes y levantaba la corteza fabricando montañas y cordilleras le ganó la batalla a la bella teoría del océano en retirada.
La polémica sobre los orígenes de las rocas va a centrar los trabajos del siglo XVIII, existiendo dos teorías: neptunista, creada por Werner (1749-1817), y vulcanista, fundada por Hutton (1726-1797). Para el neptunismo, cuyo sistema se basaba más en hipótesis que en comprobaciones, la Tierra fue en su origen un núcleo sólido cubierto por un océano que actuó como verdadero agente del cambio geológico. Distingue cinco tipos de formaciones diferentes: primitiva, de transición, sedimentaria, derivativa y volcánica, la de constitución más reciente y accidental. El vulcanismo, o plutonismo, mantiene tesis distinta, aunque no llega a negar del todo el papel del agua en esta materia, admitiendo que la mayoría de las rocas parecen haberse formado como sedimentos marinos. Ahora bien, su consolidación había sido posible por la acción del calor subterráneo al introducirse materia fundida dentro de ellas. Más tarde, los agentes climatológicos desintegran las rocas; la lluvia y los ríos depositan sus trozos en el mar, donde constituyen nuevos estratos que emergerán otra vez para ser erosionados. En opinión de Hutton, la historia de la Tierra debe interpretarse como procesos naturales aún operativos o de reciente actividad. "Ningún poder -afirmaba- será empleado que no sea natural al globo, ni será admitida ninguna acción, excepto aquellas de las que conocemos el principio".
Aparte de esta polémica, durante la primera mitad de siglo se intentó determinar las secuencias temporales de los principales tipos de estratos de la corteza terrestre sin gran éxito en ese momento. Será durante la segunda, cuando Lehmann (1767) y Füchsel (1722-1773) establecieron la sucesión geológica de las rocas para el Harz y Turingia, respectivamente, sentando las bases de la estratigrafía científica.
Los plutonistas triunfaron sobre los neptunistas y el fuego, confuso y de estirpe romántica, que estallaba en los volcanes y levantaba la corteza fabricando montañas y cordilleras le ganó la batalla a la bella teoría del océano en retirada.
|
Pero no sin consecuencias: el océano primordial se adaptaba, aunque con dificultades a la cronología corta del relato bíblico, pero al desaparecer dejó al descubierto un océano nuevo, esta vez de tiempo. Porque pensar, como sostenían Hutton y los plutonistas, que la superficie de la Tierra había sido moldeada a lo largo del pasado por las mismas fuerzas que la modificaban ahora (la erosión, la sedimentación, la lluvia, el viento, la elevación de la corteza, volcanes y terremotos) y al mismo ritmo –esto es, el uniformismo– tenía una sola consecuencia posible: ese pasado debía, forzosamente, ser inmenso.
De pronto quedó al descubierto el “tiempo profundo”, el enorme tiempo geológico, que transcurre por debajo de nuestro tiempo cotidiano que medimos en días y años, por debajo del tiempo histórico que contabilizamos en siglos; las fuerzas que modifican la superficie de la Tierra actúan en forma lenta, increíblemente lenta: los ríos cavan sus cañadones a través de los siglos, las rocas son moldeadas por la lluvia a través de los milenios, las montañas se elevan con paciencia exasperante; por acción del material fundido que está debajo, la corteza asciende sin que nadie lo note, y una cordillera puede tardar millones de años en formarse.
La gente, que estaba acostumbrada a pensar en un mundo recientemente creado, en una breve historia de seis mil años a lo sumo, recibía un terrible golpe conceptual: descubrían que su tiempo, el tiempo de sus vidas, prácticamente no contaba en la inmensidad de los tiempos geológicos, descubrían que los ríos y los océanos, las montañas y los volcanes, eran mucho más importantes y más antiguos que ellos, que sus culturas y civilizaciones. Pero no un poco más antiguos, mucho, pero mucho más antiguos; tanto, que resultaba difícil de creer.
Pero, ¿cuán antiguo? ¿Cuánto se extendía esa especie de eternidad hacia atrás? Ya en 1778, Buffon, partiendo de la idea de que la Tierra era un fragmento desprendido del Sol que se había enfriado lentamente, estimó esa eternidad en 74 mil años; la cifra causó escalofríos, y nadie la creyó, aunque en realidad no era nada, nada de nada; cuando Lyell publicó en 1930 su Geología de 1830, que más tarde inspiraría a Darwin la teoría de la evolución, se hablaba ya de millones de años; a mediados del siglo XIX, Lord Kelvin calculó la edad de la Tierra en cien millones de años, nada menos: casi mil quinientas veces más que la cifra alocada de Buffon. Pero a fines del siglo, el número había trepado a mil quinientos millones de años, y más tarde, cuando se pudieron datar las rocas con elementos radiactivos, Arthur Holmes arrojó, para el pasado de la Tierra, la cifra de cuatro mil quinientos millones de años, que es la que aceptamos actualmente.
Cuatro mil quinientos millones de años: es muchísimo. Si la comprimiéramos en un año, la vida humana media duraría apenas ocho décimas de segundo. Tropezar con una roca es tropezar con el tiempo; cuando se nos cure la lastimadura, la roca todavía estará ahí, y cuando nazcan los taranietos de los nietos de quienes están leyendo esto, la roca seguirá estando allí, casi sin cambios. Quizá por eso los geólogos, dicen, son gente melancólica y escéptica, y no usan reloj.
Esta ciencia se fundamenta en la consideración de que todas las transformaciones de la corteza terrestre han obedecido a causas que todavía, con mayor o menor intensidad, actúan en ella y que, por tanto, la Tierra está en continua transformación (en contraposición a las antiguas ideas de grandes catástrofes que no han tenido repetición). Posteriormente a Lyell, en la segunda mitad del siglo XIX, la geología experimenta un gran desarrollo gracias a la aparición de nuevas técnicas, métodos y teorías (A. Heim, 1878, con la teoría de los mantos de corrimiento; E. Suess, 1897, con la explicación de transgresiones y regresiones por isostasia, etc.). Suess publicó una vasta síntesis de todo el saber geológico del siglo XIX. El siglo XX aporta la teoría de la deriva de los continentes (Taylor, 1910; Alfred Wegener, 1912), estudio de materiales con el uso de los rayos X (Bragg, 1920), etc. En la década de 1950 se inicia la exploración submarina de los océanos, y a partir de 1969 la geología tiene la ocasión de realizar sus primeros estudios sobre rocas lunares y del planeta Marte.
![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u2S-6esOEb-CoCE167cKLbEhPQQ7tR0bAvEKXe6AuuYcgDjAanJdcsvHOKp_nFxh0D157fwBCXyM5X8q0xYZOt6ijchO6voV-MavkuWX_JO7Yn_w=s0-d)
De pronto quedó al descubierto el “tiempo profundo”, el enorme tiempo geológico, que transcurre por debajo de nuestro tiempo cotidiano que medimos en días y años, por debajo del tiempo histórico que contabilizamos en siglos; las fuerzas que modifican la superficie de la Tierra actúan en forma lenta, increíblemente lenta: los ríos cavan sus cañadones a través de los siglos, las rocas son moldeadas por la lluvia a través de los milenios, las montañas se elevan con paciencia exasperante; por acción del material fundido que está debajo, la corteza asciende sin que nadie lo note, y una cordillera puede tardar millones de años en formarse.
La gente, que estaba acostumbrada a pensar en un mundo recientemente creado, en una breve historia de seis mil años a lo sumo, recibía un terrible golpe conceptual: descubrían que su tiempo, el tiempo de sus vidas, prácticamente no contaba en la inmensidad de los tiempos geológicos, descubrían que los ríos y los océanos, las montañas y los volcanes, eran mucho más importantes y más antiguos que ellos, que sus culturas y civilizaciones. Pero no un poco más antiguos, mucho, pero mucho más antiguos; tanto, que resultaba difícil de creer.
Pero, ¿cuán antiguo? ¿Cuánto se extendía esa especie de eternidad hacia atrás? Ya en 1778, Buffon, partiendo de la idea de que la Tierra era un fragmento desprendido del Sol que se había enfriado lentamente, estimó esa eternidad en 74 mil años; la cifra causó escalofríos, y nadie la creyó, aunque en realidad no era nada, nada de nada; cuando Lyell publicó en 1930 su Geología de 1830, que más tarde inspiraría a Darwin la teoría de la evolución, se hablaba ya de millones de años; a mediados del siglo XIX, Lord Kelvin calculó la edad de la Tierra en cien millones de años, nada menos: casi mil quinientas veces más que la cifra alocada de Buffon. Pero a fines del siglo, el número había trepado a mil quinientos millones de años, y más tarde, cuando se pudieron datar las rocas con elementos radiactivos, Arthur Holmes arrojó, para el pasado de la Tierra, la cifra de cuatro mil quinientos millones de años, que es la que aceptamos actualmente.
Cuatro mil quinientos millones de años: es muchísimo. Si la comprimiéramos en un año, la vida humana media duraría apenas ocho décimas de segundo. Tropezar con una roca es tropezar con el tiempo; cuando se nos cure la lastimadura, la roca todavía estará ahí, y cuando nazcan los taranietos de los nietos de quienes están leyendo esto, la roca seguirá estando allí, casi sin cambios. Quizá por eso los geólogos, dicen, son gente melancólica y escéptica, y no usan reloj.
Esta ciencia se fundamenta en la consideración de que todas las transformaciones de la corteza terrestre han obedecido a causas que todavía, con mayor o menor intensidad, actúan en ella y que, por tanto, la Tierra está en continua transformación (en contraposición a las antiguas ideas de grandes catástrofes que no han tenido repetición). Posteriormente a Lyell, en la segunda mitad del siglo XIX, la geología experimenta un gran desarrollo gracias a la aparición de nuevas técnicas, métodos y teorías (A. Heim, 1878, con la teoría de los mantos de corrimiento; E. Suess, 1897, con la explicación de transgresiones y regresiones por isostasia, etc.). Suess publicó una vasta síntesis de todo el saber geológico del siglo XIX. El siglo XX aporta la teoría de la deriva de los continentes (Taylor, 1910; Alfred Wegener, 1912), estudio de materiales con el uso de los rayos X (Bragg, 1920), etc. En la década de 1950 se inicia la exploración submarina de los océanos, y a partir de 1969 la geología tiene la ocasión de realizar sus primeros estudios sobre rocas lunares y del planeta Marte.
lunes, 22 de noviembre de 2010
domingo, 21 de noviembre de 2010
Suscribirse a:
Entradas (Atom)